Broadcast-and-Select Switching System Based on Optical Time-Division Multiplexing (OTDM) Technology∗

نویسندگان

  • Masato TSUKADA
  • Adrian J. KEATING
چکیده

This paper presents large capacity switching systems for a local network using the broadcast-and-select (B&S) architecture. The B&S switching system, based on optical time-division multiplexing (OTDM), can provide several hundreds of Gbit/s by using a nonlinear optical switch as the timechannel selector. Moreover, the combination of OTDM and wavelength-division multiplexing (WDM) can realize throughputs over Tbit/s. In experiments, first, all-optical selection from a 51.2-Gbit/s data-stream to yield a 160-Mbit/s data-channel is demonstrated for a B&S OTDM switching system. Second, all-optical selection from a 25.6-Gbit/s × 2 (51.2-Gbit/s) WDM data-stream to yield a 160-Mbit/s data-channel is demonstrated for a B&S OTDM and WDM switching system. Finally, the number of optical amplifiers that one user has to share in the B&S OTDM switching system is discussed. key words: photonics in switching, broadcast-and-select net-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-speed All- Optical Time Division Multiplexed Node

In future high-speed self-routing photonic networks based on all-optical time division multiplexing (OTDM) it is highly desirable to carry out packet switching, clock recovery and demultplexing in the optical domain in order to avoid the bottleneck due to the optoelectronics conversion. In this paper we propose a self-routing OTDM node structure composed of an all-optical router and demultiplex...

متن کامل

Simulation of an all Optical Time Division Multiplexing Router Employing

Synchronisation is an important and critical issue in high-speed all optical time division multiplexed (OTDM) packet routing and transmission. In this paper we present a technique for separating the clock synchronization pulse from an incoming optical time division multiplexed data packet, based on all-optical switching devices with optical feedback. A 1X2 OTDM router composed of three Symmetri...

متن کامل

All-Optical TDM Data Demultiplexing at 80 Gb/s With Significant Timing Jitter Tolerance Using a Fiber Bragg Grating Based Rectangular Pulse Switching Technology

We demonstrate the use of fiber Bragg grating based pulse-shaping technology to provide timing jitter tolerant data demultiplexing in an 80 Gb/s all-optical time division multiplexing (OTDM) system. Error-free demultiplexing operation is achieved with 6 ps timing jitter tolerance using superstructured fiber Bragg grating based 1.7 ps soliton to 10 ps rectangular pulse conversion at the switchin...

متن کامل

Controller Receiver Data Control Clock Control Received Data TOAD Clock Time Slot Tuner

Although lightwave technology is meeting the demand for point-to-point and long-haul transport of digital information, routing packets at the nodes of the network has typically been carried out using electronically switched backplane routers. The growing capacity on the Internet is placing an ever greater demand on electronic routing technologies. While WDM can support large aggregate traffic b...

متن کامل

Performance analysis of realistic optical time division multiplexed wavelength-routed networks - Computer Communications, 2003. CCW 2003. Proceedings. 2003 IEEE 18th Annual Workshop on

Application of optical time division multiplexing (OTDM) in wavelength routed optical networks will greatly enhance the flexibility of bandwidth assignment because OTDM provides time division sub-channels in a wavelength to match the processing speed of electronic devices. Different types of such OTDM wavelength-routed (OTDM-WR) networks assuming different level of sophistication of the OTDM te...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999